Digital SAT Math Geometry and Trigonometry Lines, angles, and triangles

Get unlimited access to all learning content and premium assets Membership Pro
📐 Geometry Topics on the Digital SAT
1. Lines and Angles
-
Complementary angles: sum to 90°
-
Supplementary angles: sum to 180°
-
Vertical angles: congruent
-
Angles on a straight line: sum to 180°
-
Angles around a point: sum to 360°
2. Triangles
-
Sum of interior angles: 180°
-
Types: equilateral, isosceles, scalene
-
Pythagorean Theorem (for right triangles):
a2+b2=c2a^2 + b^2 = c^2a2+b2=c2
-
Special Right Triangles:
-
45°–45°–90°: sides in ratio 1:1:21 : 1 : \sqrt{2}1:1:2
-
30°–60°–90°: sides in ratio 1:3:21 : \sqrt{3} : 21:3:2
-
3. Circles
-
Radius / Diameter: d=2rd = 2rd=2r
-
Circumference: C=2πrC = 2\pi rC=2πr
-
Area: A=πr2A = \pi r^2A=πr2
-
Arc length:
Arc length=θ/360×2πr\text{Arc length} = \theta/360 \times 2\pi rArc length=θ/360×2πr
-
Sector area:
Sector area=θ/360×πr2\text{Sector area} = \theta/360 \times \pi r^2Sector area=θ/360×πr2
-
Inscribed angles: half the measure of the intercepted arc
4. Polygons
-
Sum of interior angles of an n-sided polygon:
(n−2)×180∘(n – 2) \times 180^\circ(n−2)×180∘
-
Interior angle of a regular polygon:
(n−2)×180∘n\frac{(n – 2) \times 180^\circ}{n}n(n−2)×180∘
5. Coordinate Geometry
-
Distance formula:
d=(x2−x1)2+(y2−y1)2d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2}d=(x2−x1)2+(y2−y1)2
-
Midpoint formula:
(x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)(2x1+x2,2y1+y2)
-
Slope:
m=y2−y1x2−x1m = \frac{y_2 – y_1}{x_2 – x_1}m=x2−x1y2−y1
📏 Trigonometry Topics on the Digital SAT
1. Basic Trig Ratios (in right triangles):
- sin(θ)=oppositehypotenusecos(θ)=adjacenthypotenusetan(θ)=oppositeadjacent\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \quad \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \quad \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}sin(θ)=hypotenuseoppositecos(θ)=hypotenuseadjacenttan(θ)=adjacentopposite
2. Trig Identities (basic ones tested):
- sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1sin2(θ)+cos2(θ)=1
-
Tangent identity:
tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}tan(θ)=cos(θ)sin(θ)
3. Applications
-
Trigonometry is often used in problems involving:
-
Heights and distances
-
Angles of elevation/depression
-
Modeling with sine and cosine functions
-
📌 Strategies for Success
-
Memorize key formulas, especially triangle ratios and circle formulas.
-
Draw diagrams—even when not provided.
-
Label everything—angles, sides, coordinates.
-
Use logic—some geometry problems can be solved without calculations.
-
For trig, remember SOH-CAH-TOA and the basic identities.
-
Be careful with units (degrees vs. radians are not emphasized on the SAT—use degrees unless told otherwise).
- 1 Section
- 0 Lessons
- 10 Weeks
- Test Your Self3

Get unlimited access to all learning content and premium assets Membership Pro
You might be interested in
Sign up to receive our latest updates
Get in touch
Call us directly?
Address